

Journal of Alloys and Compo<mark>unds</mark>

Volume 883, 25 November 2021, 160846

Luminescence in the system Al₂O₃-B₂O₃

<u>S.G. Revankar ^a ∧ ⊠</u>, <u>K.A. Gedekar ^b, S.P. Puppulwar</u>^a, <u>S.P. Wankhede ^b</u>, <u>P.D. Belsare ^c</u>, <u>S.V. Moharil ^d</u>

Show more \checkmark

😪 Share 🏼 🛃 Cite

https://doi.org/10.1016/j.jallcom.2021.160846 ス Get rights and content ス

Highlights

- Combustion synthesis of phosphors in Al₂O₃-B₂O₃ system reported.
- Al₄B₂O₉, Al₅BO₉ and Al₁₈B₄O₃₃ were successfully prepared.
- Luminescence of Ce³⁺ and Cr³⁺ observed in as-combusted powders.
- Characteristic luminescence in form of narrow R lines of Cr³⁺ was observed in Al₅BO₉ and Al₁₈B₄O₃₃.

Abstract

Three compounds in the system Al₂O₃-B₂O₃, viz. Al₄B₂O₉, Al₅BO₉ and Al₁₈B₄O₃₃ were successfully prepared by facile <u>combustion synthesis</u>. Activation by 3d transition element Cr³⁺ and 4f <u>lanthanide</u> Ce³⁺ was attempted. Characteristic luminescence in form of narrow R lines of Cr³⁺ was observed in Al₅BO₉ and Al₁₈B₄O₃₃. Interaction of Cr³⁺ with the surrounding was represented by the Racah parameters. Broad band emission of Ce³⁺ arising from allowed d-f transitions in near ultraviolet (nUV) region in all 3 compounds is reported for the first time.

Graphical Abstract

Download: Download high-res image (193KB) Download: Download full-size image

Introduction

The investigations on the system Al₂O₃-B₂O₃ have a long history. A compound was identified as back as 1887 [1]. The correct composition, however, was established much later as Al₁₈B₄O₃₃ [2]. Another compound, Al₄B₂O₉, was also discovered around the same time [3]. None of these compounds have the composition of the natural mineral jeremejevite which is AlBO₃. This compound could not be prepared at normal pressure. Following these early studies, a first systematic phase diagram was given by Gielisse and Foster [4]. ICDD data mention several other phases like Al₃BO₆ [5] most of which are metastable; Al₅BO₉ being notable as a stable phase at normal temperature and pressure [6]. Decterov et. al. have given a detailed history of the phase diagram of Al₂O₃-B₂O₃ system [7].

Subsequently, these compounds were found to be useful for several applications [8]. Owing to low-cost, "suitability for large scale production, high strength, and low thermal expansion and conductivity, these compounds are used as reinforcer in metal matrix composites". It has high resistance against boron-rich glass melts and thus finds use in refractory linings [9]. Applications in catalytic converter, for thermal sealing and insulating materials in hypersonic vehicles, have also been mentioned [10]. Boron being a good neutron absorber, the aluminoborates find application in construction of reactor components.

Notwithstanding the abovementioned applications, those related to luminescence are few. Some scattered references mention luminescence in one of the phases, but systematic study is still lacking. Luminescence of Tb³⁺ [11] was investigated by Guangyan

Luminescence in the system Al2O3-B2O3 - ScienceDirect

et al. Eu²⁺ in Al₄B₂O₉, has been mentioned by Zheng and Chen, but emission is very weak and the excitation spectra are poorly resolved [12]. Yerpude et al., on the other hand, found Eu³⁺ [13] in this host. Luminescence of Nd³⁺-Yb³⁺ [14] and associated upconversion [15] has been also described. Luminescence of some lanthanides in Al₁₈B₄O₃₃ has been mentioned, though there is huge difference in sizes of Al³⁺ and trivalent lanthanide ions Ce³⁺[11], Eu³⁺ [16], [17], [18], Tb³⁺ [19], Er³⁺ [20]. In recent years only, some luminescence studies have also been reported for Al₅BO₉, particularly, trivalent Eu³⁺ [21] and Sm³⁺ [22]have been investigated.

Considering this lack of information on luminescence, we have undertaken the work on luminescence in system Al_2O_3 - B_2O_3 . Luminescence of Ce^{3+} and Cr^{3+} is reported here. Ce^{3+} usually gives strong photoluminescence due to allowed nature of the f-d transitions. Cr^{3+} can suitably occupy Al^{3+} substitutional site and give line emission in oxidic hosts. Hence, these two activators were chosen. Three phases, $Al_{18}B_4O_{33}$, $Al_4B_2O_9$ and Al_5BO_9 , could be prepared using combustion method by just changing the Al:B ratio in the starting mixture.

Access through your organization

Check access to the full text by signing in through your organization.

Access through your institution

Section snippets

Experimental

Known stable phases, Al₁₈B₄O₃₃, Al₄B₂O₉ and Al₅BO₉, were prepared by combustion synthesis. A detailed description is presented in our earlier work [23]. Salient points are as follows. "Aluminium nitrate has exothermic reaction with urea. Reagent grade (Indian Rare Earths, Ltd.) Cerium oxalate/Chromium oxides were converted to the corresponding nitrates by dissolving in minimum amount of nitric acid. The nitrates were dried by prolonged, gentle warming. Stoichiometric amounts of hydrated...

$Al_4B_2O_9$

The formation of $Al_4B_2O_9$ was ascertained with the help of XRD. In Fig. 1 comparison of the measured pattern with the ICDD data file 79–1477 is made. The measured pattern is noisy due to small particle size typical of combustion synthesis. Notwithstanding the noisy pattern, sharp lines are observed superposed at the positions matching with the

ICDD file. Thus, simple combustion synthesis has produced Al₄B₂O₉. Methods described in literature are much more cumbersome. Four different methods for...

Conclusions

Three phases in the system Al₂O₃-B₂O₃ viz. Al₄B₂O₉, Al₅BO₉ and Al₁₈B₄O₃₃ could be prepared by the one step combustion synthesis just by changing Al:B ratio in the starting mixture. These could be activated by Ce³⁺ and Cr³⁺. Owing to large difference in ionic sizes of the host Al³⁺ and Ce³⁺, only 0.2% Ce³⁺ could be incorporated. New results on luminescence of Cr³⁺ in these compounds are presented. Line emission originating from $^{2}E \rightarrow {}^{4}A_{2g}$ transition around 700 nm is observed for Al₅BO₉ and Al₁₈B₄...

CRediT authorship contribution statement

S.G.Revankar – Synthesis, Manuscript writing, K.A.Gedekar- Synthesis and Editing, S.P.Puppulwar-Editing of manuscript, S.P.Wankhede- Synthesis and Editing, P.D. Belsare – Characterization, S. V. Moharil – Basic concept and Editing....

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper....

Acknowledgements

We are thankful to Department of Physics, RTM Nagpur University for the help provided in recording XRD. Crystal structure diagrams are prepared using Vesta software [41]. We are grateful to the copyright owners for permitting free use....

Recommended articles

References (41)

Martin Fisch *et al.* Crystal-chemistry of mullitetype aluminoborates Al₁₈B₄O₃₃ and Al₅BO₉: a stoichiometry puzzle

J. Solid State Chem. (2011)

A.N. Yerpude et al.

Combustion synthesis of Eu³⁺ doped Al₄B₂O₉ phosphor for light emitting diode Mater. Today Proc. (2020)

Hongpeng You *et al.* The change of Eu^{3+} -surroundings in the system $Al_2O_3-B_2O_3$ containing Eu^{3+} ions

J. Phys. Chem. Solids (1999)

R.S. Kumar *et al.* Phase formation and photoluminescence properties of Sm³⁺ doped Al₅BO₉ phosphor Optik (2015)

P.P. Lohe *et al.* **Rapid synthesis of garnet structured aluminosilicate phosphors** J. Lumin. (2019)

G.E. Malashkevich et al.

Influence of preparation redox conditions and composition of Ce containing silica gel-glass on its absorption spectrum in the visible region

J. Alloy. Compd. (2002)

G. Blasse Energy transfer in oxidic phosphors Phys. Lett. A (1968)

E. Mallard *et al.* Sci. Paris (1887)

H.N. Baumann *et al.* Electric furnace boroaluminate J. Am. Ceram. Soc. (1942)

H. Scholze Über aluminiumborate

Z. Anorg. Allg. Chem. (1956)

View more references

Cited by (4)

High thermal stability near-infrared aluminoborate phosphor with spectral tunability and its rice lighting application

2024, Materials Today Chemistry

Show abstract \checkmark

Energy transfer controlled color-tunable luminescence of Tm³⁺/Dy³⁺ co-doped aluminoborosilicate glass-ceramics 2023, Journal of Non-Crystalline Solids

Show abstract \checkmark

First observation of luminescence in synthetic boralsilite

2022, Optik

Citation Excerpt :

...Luhr et al. prepared and analysed some phases at ambient pressure. Considering that aluminoborates could be successfully synthesized by combustion synthesis [15], we attempted the preparation of Boralsilite by the same technique. Details of the experimental methods can be found in our earlier work [16]....

Show abstract $\,\,\checkmark\,\,$

Luminescence in synthetic boromullite prepared by combustion synthesis 🤊

2024, Radiation Effects and Defects in Solids

View full text

© 2021 Elsevier B.V. All rights reserved.

All content on this site: Copyright © 2024 Elsevier B.V., its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the Creative Commons licensing terms apply.