KAMLA NEHRU MAHAVIDYALAYA, NAGPUR

DEPARTMENT OF MATHEMATICS

B.Sc IVth Sem

Subject : Real Analysis (Paper I)

MCQ Questions

Solve the following multiple choice questions, Each questions having 2 marks

UNIT I

1) A finite set is always
a) Bounded
b) Unbounded
c) Bounded Below
d) Bounded Above
Ans: a
2) The set of natural number is
a) Bounded
b) Unbounded
c) Bounded Below
d) Bounded Above
Ans: c
3) If x>o be a real number, then there exist a positive integer n s.t.
a) x>n
b) x <n< td=""></n<>
c) x=n
d) None of these
Ans: b
4) Let $x,y,z \in R$ then

a) lxyl ≤ lxl lyl
b) lxyl < lxl lyl
c) lxyl > lxl lyl
d) lxyl = lxl lyl
Ans : d
5) If there is no open interval containing x or/and contained in M then M is
a) nbd of x
b) open in x
c) not a nbd of x
d) none of these
Ans: c
6) The empty set is
a) Closed set
b) Open set
c) Closed set as well as open set
d) Neither closed nor open
Ans: c
7) If every neighbourhood of x contains a point of X other than x is
a) open set
b) limit point
c) Interior point
d) None of these
Ans: b
8) Every infinite bounded subset of R has a
a) Interior Point
b) Limit point
c) Both Interior and limit point

d) None of these
Ans: b
9) The set of integers has limit point
a) one
b) no
c) more than one
d) None of these
Ans: b
10) The derived set of a set X is
a) Closed
b) open
c) Neither closed nor open
d) Both (a) and (b)
Ans: a
11) If X = N then $X^d =$
a) R
b) N
c) Ø
d) All of the above
d) All of the above Ans : c
Ans : c
Ans : c 12) Every real number is a limit point of
Ans: c 12) Every real number is a limit point of a) Complex number
Ans: c 12) Every real number is a limit point of a) Complex number b) Irrational Number
Ans: c 12) Every real number is a limit point of a) Complex number b) Irrational Number c) Rational Number

a) open set
b) not open set
c) nbd
d) None of these
Ans: a
14) Let X is subset of R and if $X^0 = X$ then X is
a) open
b) closed
c) Both (a) and (b)
d) Neither (a) nor (b)
Ans: a
15) A limit point of a set may or may not be a member of the set.
a) True
b) False
Ans: a
UNIT II
1) A sequence $\langle x_n \rangle = (-1)^n$ is
a) convergent
b) divergent
c) oscillatory
c) oscillatory d) All of the above
d) All of the above
d) All of the above Ans: c
d) All of the above Ans: c 2) A sequence <2+(-1) ⁿ > is
d) All of the above Ans: c 2) A sequence <2+(-1) ⁿ > is a) Unbounded

Ans:b

- 3) Every convergent sequence is
- a) Unbounded
- b) Bounded
- c) Bounded below
- d) Bounded above

Ans:b

- 4) Every convergent sequence has a ----- limit point.
- a) two
- b) no
- c) Unique
- d) More than one

Ans:c

- $5)\lim_{n\to\infty}\frac{n}{n+1}=$
- a) 0
- b) 1
- c) ∞
- d) None of these

Ans:b

- 6) Which of the following statement is true?
- a) $x_{n+1} > x_n$
- b) $x_{n+1} < x_n$
- c) $x_{n+1} \ge x_n$
- d) All of the above

Ans:d

- 7) If a Monotonic increasing sequence is bounded then it is
- a) convergent

b) divergent
c) oscillatory
d) All of the above
Ans: a
2) A seguence <v></v>

8) A sequence $\langle x_n \rangle = \frac{2n-7}{3n+2}$ tends to the limit

a) 7/2

b) 3/2

c) 2/3

d) ∞

Ans:c

9) Every bounded sequence is a Cauchy sequence.

a) True

b) False

Ans:b

10) If a sequence $\langle x_n \rangle$ is Cauchy sequence then it is

a) Convergent

b) Divergent

c) Neither Convergent nor Divergent

d) None of these

Ans: a

11) The sequence <n> is

a) Diverges to -∞

b) Diverges to +∞

c) Converges to 1

d) None of these

Ans:b

12) $\lim_{n\to\infty} \left[\frac{(n!)^{1/n}}{n} \right] =$

a) 1
b) e
c) 1/e
d) 0
Ans: c
13) Is <1/n> Cauchy sequence?
a) True
b) False
Ans: a
14) If $< x_n > = \{K\}$ be a constant sequence then $\lim_{n \to \infty} x_n = 1$
a) 0
b) K
c) ∞
d) None of these
Ans: b
$15) \lim_{n \to \infty} \frac{1}{\sqrt{n!}} =$
a) 0
b) 1
c) ∞
d) None of these
Ans: a
UNIT III
1) If $\lim_{n\to\infty}x_n\neq 0$ then $\sum x_n$ is
a) Convergent
b) Bounded
c) Not convergent
d) None of these

Ans : c

- 2) A series $\sum_n x_n$ is said to be positive term series if
- a) $x_n \le 0$, $n \in N$
- b) $x_n < 0$, $n \in N$
- c) $x_n \ge 0$, $n \in N$
- d) All of the above

Ans:c

- 3) If series $\sum x_n = \frac{1}{n^2}$ then
- a) Convergent
- b) Divergent
- c) Neither convergent nor divergent
- d) None of these

Ans: a

- 4)) A series $\sum_n rac{r^n}{n!}$, r>0 is
- a) Convergent
- b) Divergent
- c) Neither convergent nor divergent
- d) None of these

Ans: a

- 5) The series $\sum x_n$ is called absolutely convergent series if the series
- a) $\sum x_n$ is convergent
- b) $\sum |x_n|$ is divergent
- c) $\sum |x_n|$ is convergent
- d) None of these

Ans:c

- 6) A convergent series is always an absolutely convergent series.
- a) True

b) False

Ans:b

- 7) If the series $\sum x_n$ is convergent but $\sum |x_n|$ is divergent then the series $\sum x_n$ is called
- a) Convergent
- b) Divergent
- c) Absolutely convergent
- d) Conditionally convergent

Ans:d

- 8) $\sum \frac{1}{3^n + x} x > 0$ is
- a) Convergent
- b) Divergent
- c) Absolutely convergent
- d) Conditionally convergent

Ans: a

- 9) $\sum_{n=1}^{\infty} \frac{n+1}{(n+2)^2}$ is
- a) Convergent
- b) Divergent
- c) Absolutely convergent
- d) Conditionally convergent

Ans:b

- 10) Test the series $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \frac{1}{5} - -$ is
- a) Convergent
- b) Divergent
- c) Absolutely convergent
- d) Conditionally convergent

Ans:a

Q.1: If P* is a refinement of P then

a)
$$L(P, f, \alpha) \le L(P^*, f, \alpha)$$

b)
$$L(P, f, \alpha) \ge L(P^*, f, \alpha)$$

c)
$$L(P, f, \alpha) < L(P^*, f, \alpha)$$

d)
$$L(P, f, \alpha) > L(P^*, f, \alpha)$$

Ans: a

Q.2 : Let f be a bounded function and α is non-decreasing function on [a,b]. A function f is integrable with respect to α on [a, b] i.e. $f \in R(\alpha)$ on [a, b] if and only if for every $\epsilon > 0$ there exist a partition P on [a, b] such that

a)
$$U(P, f, \alpha) - L(P, f, \alpha) > \in$$

b)
$$U(P, f, \alpha) - L(P, f, \alpha) < \in$$

c)
$$U(P, f, \alpha) - L(P, f, \alpha) \le \in$$

d)
$$U(P, f, \alpha) - L(P, f, \alpha) \ge \in$$

Ans:b

Q.3 : Let f be a bounded function and α is non-decreasing function on [a, b], then

$$a) \int_{-a}^{b} f d\alpha \ge \int_{a}^{-b} f d\alpha$$

$$b) \int_{-a}^{b} f d\alpha > \int_{a}^{-b} f d\alpha$$

$$c) \int_{-a}^{b} f d\alpha < \int_{a}^{-b} f d\alpha$$

$$d) \int_{-a}^{b} f d\alpha \le \int_{a}^{-b} f d\alpha$$

Ans: d

Q.4: If
$$f \in R(\alpha_1)$$
 and $f \in R(\alpha_2)$ then

a)
$$f \in R(\alpha_1) + R(\alpha_2)$$

b)
$$f \in R(\alpha_1 + \alpha_2)$$

c)
$$f \in R(\alpha_1) - R(\alpha_2)$$

d) All of the above

Ans:b

Q.5: If M and m be the supremum and infimum of a bounded function on [a, b] then

a)
$$m[\alpha(b) - \alpha(a)] \le L(P, f, \alpha) \le U(P, f, \alpha) \le M[\alpha(b) - \alpha(a)]$$

b)
$$m[\alpha(b) - \alpha(a)] \le L(P, f, \alpha) \le U(P, f, \alpha) < M[\alpha(b) - \alpha(a)]$$

c)
$$m[\alpha(b) - \alpha(a)] \le L(P, f, \alpha) = U(P, f, \alpha) \le M[\alpha(b) - \alpha(a)]$$

d)
$$m[\alpha(b) - \alpha(a)] < L(P, f, \alpha) < U(P, f, \alpha) < M[\alpha(b) - \alpha(a)]$$

Ans:a

Q.6 :
$$\int_a^b f d\alpha$$
 exists if

- a) The function f is integrable over [a, b]
- b) The function f is bounded on [a, b]
- c) The function f is bounded and integrable over [a, b]
- d) All of the above

Q.7 : If
$$\int_a^{-b} f d\alpha = \int_{-a}^b f d\alpha = \int_a^b f d\alpha$$
 then

a)
$$f \in R(\alpha)$$

b)
$$f \notin R(\alpha)$$

- c) both (a) and (b)
- d) None of the above

$$Q.8: U(P, f, \alpha) - L(P, f, \alpha) =$$

a)
$$\sum_{i=1}^{n} (M_i - m_i) \Delta \alpha_i$$

b)
$$\sum_{i=1}^{n} M_i \Delta \alpha_i - \sum_{i=1}^{n} m_i \Delta \alpha_i$$

- c) Both (a) and (b)
- d) None of the above

Q.9 : Let I be a closed and bounded interval and P be any partition of I. The Partition P^* is called a refinement of P if

a)
$$P^* \subset P$$

b)
$$P^* \supset P$$

- c) Only (b)
- d) Both (a) and (b)

Ans: c

Q.10: If f is continuous on [a, b] then

- a) $f \in R(\alpha)$ on [a, b]
- b) $f \notin R(\alpha)$ on [a, b]
- c) both (a) and (b)
- d) None of the above

Ans: a

- Q.11: $\Delta x_i =$
- a) $x_i x_{i+1}$
- b) $x_i x_{i-1}$
- c) $x_i + x_{i-1}$
- d) None of the above

Ans:b

- Q.12 : If $f_1(x) \le f_2(x)$ on [a, b], then
- a) $\int_a^b f_1 d\alpha \le \int_a^b f_2 d\alpha$
- b) $\int_a^b f_1 d\alpha \ge \int_a^b f_2 d\alpha$
- c) $\int_a^b f_1 d\alpha < \int_a^b f_2 d\alpha$
- d) $\int_a^b f_1 d\alpha > \int_a^b f_2 d\alpha$

Ans: a

- Q.13: If $f \in R(\alpha)$ on [a, b] and c be a point such that a < c < b then
- a) $f \in R(\alpha)$ on [a, c] and on [c, b]
- b) $f \notin R(\alpha)$ on [a, c] and on [c, b]
- c) both (a) and (b)
- d) None of the above

Ans: a

- Q.14: Which one of the following is true?
- a) A constant function is Riemann integrable
- b) Constant function is not Riemann integrable
- c) A constant function may or may not be Riemann integrable

d) None of the above

Ans : a

Q.15: If $f \in R(\alpha)$ on [a, b] then

a)
$$f^2 \in R(\alpha)$$
 on [a, b]

b)
$$f^2 \notin R(\alpha)$$
 on [a, b]

- c) both (a) and (b)
- d) None of the above

Ans:a